

UNIVERSITY OF NORTH BENGAL B.Sc. Honours 3rd Semester Examination, 2021

GE2-P1-MATHEMATICS

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains MATHGE1, MATHGE2, MATHGE3, MATHGE4 and MATHGE5. Candidates are required to answer any *one* from the *five* MATHGE courses and they should mention it clearly on the Answer Book.

MATHGE1

CALCULUS, GEOMETRY AND DE

GROUP-A

1.	Answer any <i>four</i> questions from the following:			
	(a)	Prove that the area included between the Folium of Descartes $x^3 + y^3 = 3axy$ and its asymptotes $x + y + a = 0$ is $3/2a^2$.	3	
	(b)	Discuss the characteristics of the curve $y^2(x^2-9) = x^4$ and then sketch or trace it.	3	
	(c)	Discuss the asymptotes of the curve $y = \frac{3x}{2} \log \left(e - \frac{1}{3x} \right)$.	3	
	(d)	Find the area bounded by the curve $y = \log x$, x-axis and the line $x = 10$.	3	
	(e)	Show that origin is the point of inflexion of the curve $a^2y^2 = a^2x^2 - x^4$.	3	
	(f) Show that the line $\frac{x+2}{2} = \frac{y}{3} = \frac{z-1}{-2}$ is a generator of the cone $\frac{x^2}{4} - \frac{y^2}{9} = z$.			
		GROUP-B		
2.		GROUP-B Answer any <i>four</i> questions from the following:	6×4 = 24	
2.	(a)		6×4 = 24 6	
2.		Answer any <i>four</i> questions from the following:		
2.	(b)	Answer any <i>four</i> questions from the following: Find the asymptotes of the curve $(x^2 - y^2) - 8(x^2 + y^2) + 8x - 16 = 0$. Find the area included between the curve $xy^2 = 4a^2(2a - x), a > 0$ and its	6	
2.	(b) (c)	Answer any <i>four</i> questions from the following: Find the asymptotes of the curve $(x^2 - y^2) - 8(x^2 + y^2) + 8x - 16 = 0$. Find the area included between the curve $xy^2 = 4a^2(2a - x), a > 0$ and its asymptotes. A figure bounded by $x^{2/3} + y^{2/3} = a^{2/3}$ is revolved about <i>x</i> -axis. Find the volume of	6 6	

(e) If $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ represent one of a set of three mutually perpendicular generators of the cone 5yz - 8zx - 3xy = 0. Find the equation of other two generators.

(f) If
$$y = \frac{\sin^{-1} x}{\sqrt{1 - x^2}}$$
, $|x| < 1$, then show that $(1 - x^2)y_{n+2} - (2n+3)xy_{n+1} - (n+1)^2y_n = 0$. 6

GROUP-C

	Answer any two questions from the following	12×2=24
3.	(a) Find the envelope of the curve $x^2 \cos \theta + y^2 \sin \theta = a^2$, where θ is a parameter.	6
	(b) A sphere of radius <i>r</i> passes through origin and meets the coordinate axes at <i>A</i> , <i>B</i> , <i>C</i> . Prove that the centroid of triangle <i>ABC</i> lies on the sphere $9(x^2 + y^2 + z^2) = 4r^2$.	6
4.	(a) If ρ , ρ' be the radii of curvature at the ends of two conjugate diameters of an ellipse, prove that $(\rho^{2/3} + {\rho'}^{2/3})(ab)^{2/3} = (a^2 + b^2)$.	6
	(b) Solve $(y^4 + 2y)dx + (xy^3 + 2y^4 - 4x)dy = 0$ by evaluating Integrating factor.	6
5.	(a) Find <i>a</i> and <i>b</i> in order that $\lim_{x \to 0} \frac{a \sin 2x - b \sin x}{x^3} = 1.$	6
	(b) Find the angle through which the axes must be turned so that the equation $lx - my + n = 0$ ($m \neq 0$) may be reduced to the form $ay + b = 0$.	6
6.	(a) Reduce the equation $xyp^2 - p(x^2 + y^2 - 1) + xy = 0$ to Clairaut's form by the substitutions $x^2 = u$, $y^2 = v$. Hence show that the equation represents a family of conics touching four sides of a square.	6

(b) Show that the envelope of the circles whose centre lie on the rectangular hyperbola $xy = c^2$ and which passes through its centre is $(x^2 + y^2)^2 = 16c^2xy$.

MATHGE2

ALGEBRA

GROUP-A

1.		Answer any <i>four</i> questions from the following:	3×4 = 12
	(a)	Find the nature of the roots of the equation $x^6 + x^4 + x^2 + 2x + 5 = 0$, by using Descartes rule of signs.	3
	(b)	Prove that $3.4^{n+1} \equiv 3 \pmod{9}$ for all positive integer <i>n</i> .	3
	(c)	Prove that $3.4^{n+2} \equiv 3 \pmod{9}$ for all positive integer <i>n</i> . If $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, find the rank of the matrix $A + A^2$.	3

- (d) If P is an $n \times n$ real orthogonal matrix with det P = -1. Prove that $P + I_n$ is a 3 singular matrix.
- (e) For what real values of k, does the set $S = \{(k, 1, k), (0, k, 1), (1, 1, 1)\}$ form a basis of 3 \mathbb{R}^3 ?

(f) Prove that
$$\log(3+4i) = \log 5 + \left(2n\pi + \tan^{-1}\frac{4}{3}\right)i$$
.

GROUP-B

2. Answer any *four* questions from the following: $6 \times 4 = 24$ (a) If α , β , γ are the roots of the equation $2x^3 + 3x^2 - x - 1 = 0$, find the equation 6 whose roots are $\frac{\beta + \gamma}{\alpha}, \frac{\gamma + \alpha}{\beta}, \frac{\alpha + \beta}{\gamma}$.

(b) Find the roots of the equation $x^{24} - 1 = 0$. Deduce the values of $\cos \frac{\pi}{12}$ and $\cos \frac{5\pi}{12}$. 6

(c) If
$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
, prove that
(i) $S_n > \frac{2n}{n+1}$, if $n > 1$
(ii) $n + S_n > n(n+1)^{1/n}$, if $n > 1$.

- (d) Prove that the linear mapping $T : \mathbb{R}^3 \to \mathbb{R}^3$ that maps the basis vectors (1, 2, 2), (2, 1, 2), (2, 2, 1) of \mathbb{R}^3 to the vectors (0, 1, 1), (1, 0, 1), (1, 1, 0) respectively is oneone and onto.
- (e) Solve the system of linear congruences $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 4 \pmod{7}$. 6
- (f) Let M be a 3×3 real matrix with the eigen values 2, 3, 1 and corresponding eigen vectors (1, 2, 1), (0, 1, 1), (1, 1, 1) respectively. Determine the matrix M.

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

3. (a) If
$$\tan \log(x+iy) = \alpha + i\beta$$
, where $\alpha^2 + \beta^2 \neq 1$, then prove that

$$\tan\log(x^2 + y^2) = \frac{2\alpha}{1 - \alpha^2 - \beta^2}$$

(b) Using Euclidean algorithm, find integers u and v such that 1269u + 297v = 135.

4. (a) If
$$\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$$
, then prove that
 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = \frac{3}{2}$

(b) Let x, y, z be positive real numbers and
$$x + y + z = 1$$
. Show that
 $8xyz \le (1-x)(1-y)(1-z) \le \frac{8}{27}$

(c) Solve the linear congruence $15x \equiv 9 \pmod{18}$.

4

6

5. (a) Find the eigen values and the corresponding eigen vectors of the matrix

$$\begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & 2 & 0 \end{pmatrix}.$$

Further, find the algebraic and the geometric multiplicities of the eigen values.

- (b) A linear mapping $T : \mathbb{R}^3 \to \mathbb{R}^3$ is defined by T(x, y, z) = (x y, x + 2y, y + 3z), 6 $(x, y, z) \in \mathbb{R}^3$. Show that *T* is non-singular and determine T^{-1} .
- 6. (a) Solve by Cardan's method the equation: $x^3 18x 35 = 0$. 6
 - (b) Determine the conditions for which the system of equation has
 - (i) unique solution,
 - (ii) no solution
 - (iii) infinitely many solutions

$$x + y + z = 1$$

$$x + 2y - z = b$$

$$5x + 7y + az = b2$$

MATHGE3

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

GROUP-A

- 1. Answer any *four* questions from the following:
 - (a) Show that $\frac{1}{D-m}f(x) = e^{mx}\int e^{-mx}f(x)dx$.
 - (b) To solve a linear homogeneous ordinary differential equation with constant coefficients why do you assume e^{mx} (*m* is a constant) as a trial solution?
 - (c) Show that x = 0 is an ordinary point of $(x^2 1)y'' + xy' y = 0$, but x = 1 is a regular singular point.
 - (d) Determine whether the functions $y_1(x) = x^2$ and $y_2(x) = x |x|$ are linearly independent or not. Calculate its Wronskian.

(e) If
$$\vec{r} = a\cos t \hat{i} + a\sin t \hat{j} + bt \hat{k}$$
, show that $\left|\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}\right|^2 = a^2(a^2 + b^2)$.

(f) Prove that a necessary and sufficient condition for a vector function $\overline{a(t)}$ to have constant magnitude is $\vec{a} \cdot \frac{d\vec{a}}{dt} = 0$.

GROUP-B

- 2. Answer any *four* questions from the following:
 - (a) Define Lipschitz constant. Show that $f(x, y) = xy^2$ satisfies Lipschitz condition on 1+2+1+2 the rectangle $|x| \le 1, |y| \le 1$. Find the Lipschitz constant. Does the function satisfy the Lipschitz condition on the strip $|x| \le 1, |y| < \infty$? Explain.

4

 $3 \times 4 = 12$

6

2+2+2

 $6 \times 4 = 24$

(b) Solve the following system of linear differential equations by using operator $D \equiv \frac{d}{dt}$

$$\frac{dx}{dt} + \frac{dy}{dt} + 2y = 0$$
$$\frac{dx}{dt} - 3x - 2y = 0$$

- (c) Find the power series solution of the equation $(x^2 + 1)y'' + xy' xy = 0$ in powers 6 of x.
- (d) Solve the differential equation $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} y = 0$, it is given that $y = x + \frac{1}{x}$ is a 6 solution of the differential equation.
- (e) (i) A particle moves along the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5. Find the 4+2 components of velocity and acceleration at time t = 1, in the direction of $\hat{i} 3\hat{j} + 2\hat{k}$.

(ii) Show that
$$\frac{d}{dt}\left(\vec{F} \times \frac{d\vec{F}}{dt}\right) = \vec{F} \times \frac{d^2\vec{F}}{dt^2}$$
, provided \vec{F} and $\frac{d\vec{F}}{dt}$ are both differentiable.

(f) Find the directional derivative of $\varphi = 2xy - z^2$ at (2, -1, 1) in the direction of 3+1+2 $3\hat{i} + \hat{j} - \hat{k}$. In what direction is the directional derivative maximum? What is the value of the maximum?

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

- 3. (a) Solve $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$. 6+6
 - (b) Solve by the method of undetermined coefficients $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = x^3e^{2x} + xe^{2x}$.
- 4. (a) Solve by the method of variation of parameters $\frac{d^2y}{dx^2} + 4y = \sec x \tan x$. 6+6
 - (b) Show that e^{2x} and e^{3x} are linearly independent solutions of y'' 5y' + 6y = 0. Find the solution y(x) with the conditions y(0) = 0 and y'(0) = 1.
- 5. (a) Find the singularities of the differential equation

$$x(1-x)\frac{d^2y}{dx^2} + \{\gamma - (1+\alpha+\beta)x\}\frac{dy}{dx} - \alpha\beta\gamma = 0,$$

where α , β , γ are constants and determine the type of the singularities.

- (b) Evaluate $\frac{1}{D^4 + 2D^3 3D^2} 4\sin x$.
- (c) Solve $(D^4 + 4)y = \sin 2x$.

3+3+6

6

- 6. (a) Show that $\vec{F} = 2xyz^2\hat{i} + (x^2z^2 + z\cos yz)\hat{j} + (2x^2yz + y\cos yz)\hat{k}$ is a conservative 6+6 force field.
 - (b) If $\vec{F} = xy^2 z\hat{i} + xy^3 z\hat{j} x^3 y^2 \hat{k}$ and $\vec{G} = x^3 \hat{i} x^2 y z\hat{j} x^2 z^2 \hat{k}$, calculate $\frac{\partial^2 \vec{F}}{\partial v^2} \times \frac{\partial^2 \vec{G}}{\partial x^2}$ at the point (1, -1, 1).

MATHGE4

GROUP THEORY

GROUP-A

1.	Answer any <i>four</i> questions from the following:	3×4 = 12
	(a) Prove that a group (G, \circ) is abelian iff $(a \circ b)^{-1} = a^{-1} \circ b^{-1}$, $\forall a, b \in G$.	3
	(b) Let G be a group of order pq , where p and q are distinct primes. Prove that every proper subgroup of G is cyclic.	3
	(c) Let $G = (\mathbb{Z}_6, +), H = \{\overline{0}, \overline{2}\}$. Check whether <i>H</i> is a normal subgroup of <i>G</i> or not?	3
	(d) Let <i>H</i> be a subgroup of a group <i>G</i> and $[G:H] = 2$. Prove that <i>H</i> is normal in <i>G</i> .	3
	(e) If G is a group such that $(a \cdot b)^2 = a^2 \cdot b^2$ for all $a, b \in G$. Show that G must be abelian.	3
	(f) Let $(G, *)$ be a group and $a, b \in G$. If $a^2 = e$ and $a * b^2 * a = b^3$, then prove that $b^5 = e$.	3

GROUP-B

2.	Answer any <i>four</i> questions from the following:				
	(a) (i)	Prove that there does not exist an onto homomorphism from the group $(\mathbb{Z}_{6}, +)$	3+3		

- (ii) Let (G, \circ) be a group and a map $\varphi: G \to G$ is defined by $\varphi(x) = x^{-1}$, $x \in G$. Prove that φ is a homomorphism iff G is commutative.
- (b) (i) Show that the union of two subgroups of a group G is not necessarily a 2 + 4subgroup of G.
 - (ii) Suppose that G be a group and H be a subgroup of G. Let $g \in G$ be fixed. Prove that the subset $gHg^{-1} = \{ghg^{-1} : h \in H\}$ is a subgroup of G.

(c) (i) If
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 3 & 4 & 2 & 5 \end{pmatrix}$$
, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 2 & 1 & 6 \end{pmatrix}$ find $f \circ g$ and $g \circ f$. 2+4

(ii) Prove that every group of prime order is cyclic.

to $(\mathbb{Z}_4, +)$.

(d) Prove that the quotient group Q/\mathbb{Z} is an infinite group, every element of which is of 6 finite order.

(e) Let
$$GL(2, \mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{R} \text{ and } ad - bc \neq 0 \right\}$$
. Find $C\left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right)$ and $3+3$
 $Z(GL(2, \mathbb{R}))$.

(f) Suppose that (G, ∘) is a group and Z(G) = {g | gx = xg, ∀x ∈ G}. Prove that Z(G)
3+3 is a normal subgroup of G. Also prove that if G/Z(G) is cyclic then G is commutative.

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

3. (a) Show that the set H forms a commutative group w.r.t matrix multiplication, when 4+2+3+3

$$H\left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} , a^2 + b^2 = 1 \right\}$$

- (b) Examine the following system is a group or not? (\mathbb{R}, \circ) where $a \circ b = 2(a+b)$, $a, b \in \mathbb{R}$.
- (c) Prove that for a group (G, \circ) , $o(a) = b(a^{-1}), a \in G$.
- (d) Suppose that the order of an element *a* in a group (G, \circ) is 30. Find the order of a^{18} .
- 4. (a) Prove that two infinite cyclic group are isomorphic.
 - (b) Let $G = (\mathbb{R}, +)$, $H = (\mathbb{Z}, +)$ and $G' = (\{z \in \mathbb{C} : |z| = 1\}, \cdot)$ prove that $G/H \simeq G'$.
 - (c) Let $G = S_3$ and $G' = (\{-1, 1\}, \cdot)$ and $\varphi: G \to G'$ is defined by

 $\varphi(\alpha) = \begin{cases} 1, & \alpha \text{ is an even permutation in } S_3 \\ -1, & \alpha \text{ is an odd permutation in } S_3 \end{cases}$

Find ker(φ). Deduce that A_3 is a normal subgroup of S_3 .

- 5. (a) Let G be a finite group generated by a. Prove that O(G) = n iff O(a) = n. 6+2+4
 - (b) Write U_{10} and U_{12} . Show that U_{10} is a cyclic group but U_{12} is not cyclic.
- 6. (a) Let $A = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} : a \in \mathbb{R} \text{ and } a \neq 0 \right\}$. Show that the set A forms a group under 6+2+4 matrix multiplication.
 - (b) Give an example of a group which is abelian but not cyclic.
 - (c) Let α and β belongs to S_n . Prove that $\beta \times \beta^{-1}$ and α are both even or both odd.

MATHGE5

NUMERICAL METHODS

GROUP-A

1.	Answer any <i>four</i> questions from the following:	$3 \times 4 = 12$
	(a) (i) Round off the following number to three decimal places: 20.1758	1
	(ii) Find the number of significant figures in $X_A = 1.8921$ given its relative error as 0.1×10^{-2} .	2

4 + 4 + 4

- (b) What is the geometric representations of the trapezoidal rule for integrating $3 \int_{a}^{b} f(x) dx$.
- (c) Find the function whose first difference is e^x tanning the step size h=1.
- (d) If $u_0 = 1$, $u_1 = 11$, $u_2 = 21$, $u_3 = 28$, $u_4 = 29$ then find $\Delta^4 u_0$.
- (e) If h = 1 then find the value of $\Delta^3(1-x)(1-2x)(1-3x)$.
- (f) Write down the order of convergence of
 - (i) Regula-Falsi method
 - (ii) Newton-Raphson method
 - (iii) Secant method

GROUP-B

Answer any *four* questions from the following

 $6 \times 4 = 24$

3

3

- 2. Use Euler's method to compute y(0.04) from the differential equation $\frac{dy}{dx} + y = 0$ with y = 1, when x = 0, taking h = 0.02.
- 3. Solve by Gauss-Seidel iteration method the system

 $x_1 + x_2 + 4x_3 = 9$ $8x_1 - 3x_2 + 2x_3 = 20$ $4x_1 + 11x_2 - x_3 = 33$

upto three significant figure.

- 4. The third order differences of a function f(x) are constant and $\int_{-1}^{1} f(x) dx = k \left[f(0) + f\left(\frac{1}{\sqrt{2}}\right) + f\left(-\frac{1}{\sqrt{2}}\right) \right]$ then find the value of k.
- 5. Find a real root of $x^{x} + x 4 = 0$ by Newton-Raphson method, correct to six decimal places.
- 6. Find f(0.23) from the following table using Newton's forward interpolation formula:

x	0.20	0.22	0.24	0.26	0.28	0.30
f(x)	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

7. Evaluate $\int_{1}^{4} \log_{e} \frac{(1+0.5x+x^{2})}{0.5+x} dx$, by trapezoidal rule, correct upto six decimal, taking 13 ordinates points.

GROUP-C

GROUP-C				
Answer any two questions from the following	12×2=24			
8. (a) Compute $\int_{2}^{10} \frac{dx}{1+x}$ using Trapezoidal and Simpson's one third rule taking $h = 1.0$ and				
compare the result with the exact value.				
(b) Compute the root of the following by Regula-Falsi method	6			
$2x - 3\sin x - 5 = 0$ correct upto three decimal places.				
9. (a) A function $f(x)$ defined on [0,1] such that $f(0) = 0$, $f(1/2) = -1$, $f(1) = 0$. Find the interpolating polynomial which approximate $f(x)$.	6			
(b) Using Runge-Kutta method of order 2 to calculate $y(0.2)$ for the equation	6			
$\frac{dy}{dx} = x + y^2, \ y(0) = 1$				
10.(a) Solve the following system of equations by Gauss-elimination method:	7			
$10x_1 - 7x_2 + 3x_3 + 5x_4 = 6,$				
$-6x_1 + 8x_2 - x_3 - 4x_4 = 5,$				
$3x_1 + x_2 + 4x_3 + 11x_4 = 2$				
$5x_1 - 9x_2 - 2x_3 + 4x_4 = 7$				
(b) Evaluate the missing term in the following table	5			
x 0 1 2 3 4 5				
f(x) = 0 ? 8 15 ? 35				
11.(a) Solve the equations using Gauss-Jordan method:	4			
$3x_1 + 2x_2 + 3x_3 = 18$				
$2x_1 + x_2 + x_3 = 10$				
$x_1 + 4x_1 + 9x_3 = 16$				
(b) (i) What are 'partial and complete pivoting' in Gauss elimination method?	2			
(ii) Find the number of multiplications and divisions for solving a system of n linear equations having n unknowns using Gauss-elimination method.	6			

____×____