

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2021

GE2-P1-MATHEMATICS

Time Allotted: 2 Hours
The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains MATHGE1, MATHGE2, MATHGE3, MATHGE4 and
 MATHGE5. Candidates are required to answer any one from the five MATHGE courses and they should mention it clearly on the Answer Book.

MATHGE1

CALCUlUS, GEOMETRY AND DE

GROUP-A

1. Answer any four questions from the following:
(a) Prove that the area included between the Folium of Descartes $x^{3}+y^{3}=3 a x y$ and its asymptotes $x+y+a=0$ is $3 / 2 a^{2}$.
(b) Discuss the characteristics of the curve $y^{2}\left(x^{2}-9\right)=x^{4}$ and then sketch or trace it.
(c) Discuss the asymptotes of the curve $y=\frac{3 x}{2} \log \left(e-\frac{1}{3 x}\right)$.
(d) Find the area bounded by the curve $y=\log x, x$-axis and the line $x=10$.
(e) Show that origin is the point of inflexion of the curve $a^{2} y^{2}=a^{2} x^{2}-x^{4}$.
(f) Show that the line $\frac{x+2}{2}=\frac{y}{3}=\frac{z-1}{-2}$ is a generator of the cone $\frac{x^{2}}{4}-\frac{y^{2}}{9}=z$.

GROUP-B

2. Answer any four questions from the following:
(a) Find the asymptotes of the curve $\left(x^{2}-y^{2}\right)-8\left(x^{2}+y^{2}\right)+8 x-16=0$.
(b) Find the area included between the curve $x y^{2}=4 a^{2}(2 a-x), a>0$ and its asymptotes.
(c) A figure bounded by $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ is revolved about x-axis. Find the volume of the solid of revolution.
(d) Show that for the conic $\frac{l}{r}=1+e \cos \theta$, the equation to the directrix corresponding to the focus other than pole is $\frac{l}{r}=\frac{-\left(1-e^{2}\right) e \cos \theta}{\left(1+e^{2}\right)}$.
(e) If $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ represent one of a set of three mutually perpendicular generators of the cone $5 y z-8 z x-3 x y=0$. Find the equation of other two generators.
(f) If $y=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}},|x|<1$, then show that $\left(1-x^{2}\right) y_{n+2}-(2 n+3) x y_{n+1}-(n+1)^{2} y_{n}=0$.

GROUP-C

Answer any two questions from the following

3. (a) Find the envelope of the curve $x^{2} \cos \theta+y^{2} \sin \theta=a^{2}$, where θ is a parameter.
(b) A sphere of radius r passes through origin and meets the coordinate axes at A, B, C.

Prove that the centroid of triangle $A B C$ lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 r^{2}$.
4. (a) If ρ, ρ^{\prime} be the radii of curvature at the ends of two conjugate diameters of an ellipse, prove that $\left(\rho^{2 / 3}+\rho^{\prime 2 / 3}\right)(a b)^{2 / 3}=\left(a^{2}+b^{2}\right)$.
(b) Solve $\left(y^{4}+2 y\right) d x+\left(x y^{3}+2 y^{4}-4 x\right) d y=0$ by evaluating Integrating factor.
5. (a) Find a and b in order that $\lim _{x \rightarrow 0} \frac{a \sin 2 x-b \sin x}{x^{3}}=1$.
(b) Find the angle through which the axes must be turned so that the equation $l x-m y+n=0 \quad(m \neq 0)$ may be reduced to the form $a y+b=0$.
6. (a) Reduce the equation $x y p^{2}-p\left(x^{2}+y^{2}-1\right)+x y=0$ to Clairaut's form by the substitutions $x^{2}=u, y^{2}=v$. Hence show that the equation represents a family of conics touching four sides of a square.
(b) Show that the envelope of the circles whose centre lie on the rectangular hyperbola $x y=c^{2}$ and which passes through its centre is $\left(x^{2}+y^{2}\right)^{2}=16 c^{2} x y$.

MATHGE2

Algebra

GROUP-A

1. Answer any four questions from the following:
(a) Find the nature of the roots of the equation $x^{6}+x^{4}+x^{2}+2 x+5=0$, by using Descartes rule of signs.
(b) Prove that $3.4^{n+1} \equiv 3(\bmod 9)$ for all positive integer n.
(c) If $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$, find the rank of the matrix $A+A^{2}$.

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHGE3/2021

(d) If P is an $n \times n$ real orthogonal matrix with $\operatorname{det} P=-1$. Prove that $P+I_{n}$ is a singular matrix.
(e) For what real values of k, does the set $S=\{(k, 1, k),(0, k, 1),(1,1,1)\}$ form a basis of \mathbb{R}^{3} ?
(f) Prove that $\log (3+4 i)=\log 5+\left(2 n \pi+\tan ^{-1} \frac{4}{3}\right) i$.

GROUP-B

2. Answer any four questions from the following:
(a) If α, β, γ are the roots of the equation $2 x^{3}+3 x^{2}-x-1=0$, find the equation whose roots are $\frac{\beta+\gamma}{\alpha}, \frac{\gamma+\alpha}{\beta}, \frac{\alpha+\beta}{\gamma}$.
(b) Find the roots of the equation $x^{24}-1=0$. Deduce the values of $\cos \frac{\pi}{12}$ and $\cos \frac{5 \pi}{12}$.
(c) If $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$, prove that
(i) $S_{n}>\frac{2 n}{n+1}$, if $n>1$
(ii) $n+S_{n}>n(n+1)^{1 / n}$, if $n>1$.
(d) Prove that the linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that maps the basis vectors $(1,2,2)$, $(2,1,2),(2,2,1)$ of \mathbb{R}^{3} to the vectors $(0,1,1),(1,0,1),(1,1,0)$ respectively is oneone and onto.
(e) Solve the system of linear congruences $x \equiv 2(\bmod 3), x \equiv 3(\bmod 5), x \equiv 4(\bmod 7)$.
(f) Let M be a 3×3 real matrix with the eigen values 2,3 , 1 and corresponding eigen vectors $(1,2,1),(0,1,1),(1,1,1)$ respectively. Determine the matrix M.

GROUP-C

Answer any two questions from the following
3. (a) If $\tan \log (x+i y)=\alpha+i \beta$, where $\alpha^{2}+\beta^{2} \neq 1$, then prove that

$$
\tan \log \left(x^{2}+y^{2}\right)=\frac{2 \alpha}{1-\alpha^{2}-\beta^{2}}
$$

(b) Using Euclidean algorithm, find integers u and v such that $1269 u+297 v=135$.
4. (a) If $\cos \alpha+\cos \beta+\cos \gamma=0=\sin \alpha+\sin \beta+\sin \gamma$, then prove that

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=\frac{3}{2}
$$

(b) Let x, y, z be positive real numbers and $x+y+z=1$. Show that

$$
8 x y z \leq(1-x)(1-y)(1-z) \leq \frac{8}{27}
$$

(c) Solve the linear congruence $15 x \equiv 9(\bmod 18)$.

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHGE3/2021

5. (a) Find the eigen values and the corresponding eigen vectors of the matrix

$$
\left(\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & 2 & 0
\end{array}\right)
$$

Further, find the algebraic and the geometric multiplicities of the eigen values.
(b) A linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by $T(x, y, z)=(x-y, x+2 y, y+3 z)$, $(x, y, z) \in \mathbb{R}^{3}$. Show that T is non-singular and determine T^{-1}.
6. (a) Solve by Cardan's method the equation: $x^{3}-18 x-35=0$.
(b) Determine the conditions for which the system of equation has
(i) unique solution,
(ii) no solution
(iii) infinitely many solutions

$$
\begin{aligned}
& x+y+z=1 \\
& x+2 y-z=b \\
& 5 x+7 y+a z=b^{2}
\end{aligned}
$$

MATHGE3
 Differential Equation and Vector Calculus
 GROUP-A

1. Answer any four questions from the following:
(a) Show that $\frac{1}{D-m} f(x)=e^{m x} \int e^{-m x} f(x) d x$.
(b) To solve a linear homogeneous ordinary differential equation with constant coefficients why do you assume $e^{m x}$ (m is a constant) as a trial solution?
(c) Show that $x=0$ is an ordinary point of $\left(x^{2}-1\right) y^{\prime \prime}+x y^{\prime}-y=0$, but $x=1$ is a regular singular point.
(d) Determine whether the functions $y_{1}(x)=x^{2}$ and $y_{2}(x)=x|x|$ are linearly independent or not. Calculate its Wronskian.
(e) If $\vec{r}=a \cos t \hat{i}+a \sin t \hat{j}+b t \hat{k}$, show that $\left|\frac{d \vec{r}}{d t} \times \frac{d^{2} \vec{r}}{d t^{2}}\right|^{2}=a^{2}\left(a^{2}+b^{2}\right)$.
(f) Prove that a necessary and sufficient condition for a vector function $\overrightarrow{a(t)}$ to have constant magnitude is $\vec{a} \cdot \frac{d \vec{a}}{d t}=0$.

GROUP-B

2. Answer any four questions from the following:
(a) Define Lipschitz constant. Show that $f(x, y)=x y^{2}$ satisfies Lipschitz condition on the rectangle $|x| \leq 1,|y| \leq 1$. Find the Lipschitz constant. Does the function satisfy the Lipschitz condition on the strip $|x| \leq 1,|y|<\infty$? Explain.

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHGE3/2021

(b) Solve the following system of linear differential equations by using operator $D \equiv \frac{d}{d t}$

$$
\begin{aligned}
& \frac{d x}{d t}+\frac{d y}{d t}+2 y=0 \\
& \frac{d x}{d t}-3 x-2 y=0
\end{aligned}
$$

(c) Find the power series solution of the equation $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-x y=0$ in powers of x.
(d) Solve the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0$, it is given that $y=x+\frac{1}{x}$ is a solution of the differential equation.
(e) (i) A particle moves along the curve $x=2 t^{2}, y=t^{2}-4 t, z=3 t-5$. Find the components of velocity and acceleration at time $t=1$, in the direction of $\hat{i}-3 \hat{j}+2 \hat{k}$.
(ii) Show that $\frac{d}{d t}\left(\vec{F} \times \frac{d \vec{F}}{d t}\right)=\vec{F} \times \frac{d^{2} \vec{F}}{d t^{2}}$, provided $\quad \vec{F} \quad$ and $\quad \frac{d \vec{F}}{d t} \quad$ are both differentiable.
(f) Find the directional derivative of $\varphi=2 x y-z^{2}$ at $(2,-1,1)$ in the direction of $3 \hat{i}+\hat{j}-\hat{k}$. In what direction is the directional derivative maximum? What is the value of the maximum?

GROUP-C

Answer any two questions from the following
3. (a) Solve $x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=e^{x}$.
(b) Solve by the method of undetermined coefficients $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=x^{3} e^{2 x}+x e^{2 x}$.
4. (a) Solve by the method of variation of parameters $\frac{d^{2} y}{d x^{2}}+4 y=\sec x \tan x$.
(b) Show that $e^{2 x}$ and $e^{3 x}$ are linearly independent solutions of $y^{\prime \prime}-5 y^{\prime}+6 y=0$. Find the solution $y(x)$ with the conditions $y(0)=0$ and $y^{\prime}(0)=1$.
5. (a) Find the singularities of the differential equation

$$
x(1-x) \frac{d^{2} y}{d x^{2}}+\{\gamma-(1+\alpha+\beta) x\} \frac{d y}{d x}-\alpha \beta \gamma=0
$$

where α, β, γ are constants and determine the type of the singularities.
(b) Evaluate $\frac{1}{D^{4}+2 D^{3}-3 D^{2}} 4 \sin x$.
(c) Solve $\left(D^{4}+4\right) y=\sin 2 x$.
6. (a) Show that $\vec{F}=2 x y z^{2} \hat{i}+\left(x^{2} z^{2}+z \cos y z\right) \hat{j}+\left(2 x^{2} y z+y \cos y z\right) \hat{k}$ is a conservative force field.
(b) If $\vec{F}=x y^{2} z \hat{i}+x y^{3} z \hat{j}-x^{3} y^{2} \hat{k}$ and $\vec{G}=x^{3} \hat{i}-x^{2} y z \hat{j}-x^{2} z^{2} \hat{k}$, calculate $\frac{\partial^{2} \vec{F}}{\partial y^{2}} \times \frac{\partial^{2} \vec{G}}{\partial x^{2}}$ at the point $(1,-1,1)$.

MATHGE4

GROUP THEORY

GROUP-A

1. Answer any four questions from the following:
$3 \times 4=12$
(a) Prove that a group (G, \circ) is abelian iff $(a \circ b)^{-1}=a^{-1} \circ b^{-1}, \forall a, b \in G$.
(b) Let G be a group of order $p q$, where p and q are distinct primes. Prove that every proper subgroup of G is cyclic.
(c) Let $\mathrm{G}=\left(\mathbb{Z}_{6},+\right), H=\{\overline{0}, \overline{2}\}$. Check whether H is a normal subgroup of G or not?
(d) Let H be a subgroup of a group G and $[G: H]=2$. Prove that H is normal in G.
(e) If G is a group such that $(a \cdot b)^{2}=a^{2} \cdot b^{2}$ for all $a, b \in G$. Show that G must be abelian.
(f) Let $(G, *)$ be a group and $a, b \in G$. If $a^{2}=e$ and $a * b^{2} * a=b^{3}$, then prove that $b^{5}=e$.

GROUP-B

2. Answer any four questions from the following:
(a) (i) Prove that there does not exist an onto homomorphism from the group $\left(\mathbb{Z}_{6},+\right)$ to $\left(\mathbb{Z}_{4},+\right)$.
(ii) Let (G, \circ) be a group and a map $\varphi: G \rightarrow G$ is defined by $\varphi(x)=x^{-1}, x \in G$. Prove that φ is a homomorphism iff G is commutative.
(b) (i) Show that the union of two subgroups of a group G is not necessarily a subgroup of G.
(ii) Suppose that G be a group and H be a subgroup of G. Let $g \in G$ be fixed. Prove that the subset $g H g^{-1}=\left\{g h g^{-1}: h \in H\right\}$ is a subgroup of G.
(c) (i) If $f=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 3 & 4 & 2 & 5\end{array}\right), g=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 2 & 1 & 6\end{array}\right)$ find $f \circ g$ and $g \circ f . \quad 2+4$
(ii) Prove that every group of prime order is cyclic.
(d) Prove that the quotient group Q / \mathbb{Z} is an infinite group, every element of which is of finite order.
(e) Let $G L(2, \mathbb{R})=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{R}\right.$ and $\left.a d-b c \neq 0\right\}$. Find $C\left(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right)$ and $Z(G L(2, \mathbb{R}))$.

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHGE3/2021

(f) Suppose that (G, \circ) is a group and $Z(G)=\{g \mid g x=x g, \forall x \in G\}$. Prove that $Z(G)$ is a normal subgroup of G. Also prove that if $G / Z(G)$ is cyclic then G is commutative.

GROUP-C

Answer any two questions from the following
3. (a) Show that the set H forms a commutative group w.r.t matrix multiplication, when

$$
H\left\{\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right): a, b \in \mathbb{R}, a^{2}+b^{2}=1\right\}
$$

(b) Examine the following system is a group or not? (\mathbb{R}, \circ) where $a \circ b=2(a+b)$, $a, b \in \mathbb{R}$.
(c) Prove that for a group $(G, \circ), o(a)=b\left(a^{-1}\right), a \in G$.
(d) Suppose that the order of an element a in a group (G, \circ) is 30 . Find the order of a^{18}.
4. (a) Prove that two infinite cyclic group are isomorphic.
(b) Let $G=(\mathbb{R},+), H=(\mathbb{Z},+)$ and $G^{\prime}=(\{z \in \mathbb{C}:|z|=1\}, \cdot)$ prove that $G / H \simeq G^{\prime}$.
(c) Let $G=S_{3}$ and $G^{\prime}=(\{-1,1\}, \cdot)$ and $\varphi: G \rightarrow G^{\prime}$ is defined by

$$
\varphi(\alpha)=\left\{\begin{array}{cc}
1, & \alpha \text { is an even permutation in } S_{3} \\
-1, & \alpha \text { is an odd permutation in } S_{3}
\end{array}\right.
$$

Find $\operatorname{ker}(\varphi)$. Deduce that A_{3} is a normal subgroup of S_{3}.
5. (a) Let G be a finite group generated by a. Prove that $O(G)=n$ iff $O(a)=n$.
(b) Write U_{10} and U_{12}. Show that U_{10} is a cyclic group but U_{12} is not cyclic.
6. (a) Let $A=\left\{\left(\begin{array}{ll}a & a \\ a & a\end{array}\right): a \in \mathbb{R}\right.$ and $\left.a \neq 0\right\}$. Show that the set A forms a group under $6+2+4$ matrix multiplication.
(b) Give an example of a group which is abelian but not cyclic.
(c) Let α and β belongs to S_{n}. Prove that $\beta \times \beta^{-1}$ and α are both even or both odd.

MATHGE5

Numerical Methods

GROUP-A

1. Answer any four questions from the following: $3 \times 4=12$
(a) (i) Round off the following number to three decimal places: 20.1758
(ii) Find the number of significant figures in $X_{A}=1.8921$ given its relative error as 0.1×10^{-2}.

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHGE3/2021

(b) What is the geometric representations of the trapezoidal rule for integrating $\int_{a}^{b} f(x) d x$.
(c) Find the function whose first difference is e^{x} tanning the step size $h=1$.
(d) If $u_{0}=1, u_{1}=11, u_{2}=21, u_{3}=28, u_{4}=29$ then find $\Delta^{4} u_{0}$.
(e) If $h=1$ then find the value of $\Delta^{3}(1-x)(1-2 x)(1-3 x)$.
(f) Write down the order of convergence of
(i) Regula-Falsi method
(ii) Newton-Raphson method
(iii) Secant method

GROUP-B

Answer any four questions from the following $\quad 6 \times 4=24$
2. Use Euler's method to compute $y(0.04)$ from the differential equation $\frac{d y}{d x}+y=0$ with $y=1$, when $x=0$, taking $h=0.02$.
3. Solve by Gauss-Seidel iteration method the system

$$
\begin{aligned}
& x_{1}+x_{2}+4 x_{3}=9 \\
& 8 x_{1}-3 x_{2}+2 x_{3}=20 \\
& 4 x_{1}+11 x_{2}-x_{3}=33
\end{aligned}
$$

upto three significant figure.
4. The third order differences of a function $f(x)$ are constant and $\int_{-1}^{1} f(x) d x=k\left[f(0)+f\left(\frac{1}{\sqrt{2}}\right)+f\left(-\frac{1}{\sqrt{2}}\right)\right]$ then find the value of k.
5. Find a real root of $x^{x}+x-4=0$ by Newton-Raphson method, correct to six decimal places.
6. Find $f(0.23)$ from the following table using Newton's forward interpolation formula:

x	0.20	0.22	0.24	0.26	0.28	0.30
$f(x)$	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

7. Evaluate $\int_{1}^{4} \log _{e} \frac{\left(1+0.5 x+x^{2}\right)}{0.5+x} d x$, by trapezoidal rule, correct upto six decimal, taking 13 ordinates points.

GROUP-C

Answer any two questions from the following
8. (a) Compute $\int_{2}^{10} \frac{d x}{1+x}$ using Trapezoidal and Simpson's one third rule taking $h=1.0$ and compare the result with the exact value.
(b) Compute the root of the following by Regula-Falsi method
$2 x-3 \sin x-5=0$ correct upto three decimal places.
9. (a) A function $f(x)$ defined on $[0,1]$ such that $f(0)=0, f(1 / 2)=-1, f(1)=0$. Find the interpolating polynomial which approximate $f(x)$.
(b) Using Runge-Kutta method of order 2 to calculate $y(0.2)$ for the equation

$$
\frac{d y}{d x}=x+y^{2}, y(0)=1
$$

10.(a) Solve the following system of equations by Gauss-elimination method:

$$
\begin{aligned}
& 10 x_{1}-7 x_{2}+3 x_{3}+5 x_{4}=6, \\
& -6 x_{1}+8 x_{2}-x_{3}-4 x_{4}=5, \\
& 3 x_{1}+x_{2}+4 x_{3}+11 x_{4}=2 \\
& 5 x_{1}-9 x_{2}-2 x_{3}+4 x_{4}=7
\end{aligned}
$$

(b) Evaluate the missing term in the following table

x	0	1	2	3	4	5
$f(x)$	0	$?$	8	15	$?$	35

11.(a) Solve the equations using Gauss-Jordan method:

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+3 x_{3}=18 \\
& 2 x_{1}+x_{2}+x_{3}=10 \\
& x_{1}+4 x_{1}+9 x_{3}=16
\end{aligned}
$$

(b) (i) What are 'partial and complete pivoting' in Gauss elimination method?
(ii) Find the number of multiplications and divisions for solving a system of n linear equations having n unknowns using Gauss-elimination method.

